Search results for "Reaction dynamics"
showing 10 items of 10 documents
Gas-Phase Synthesis of the Elusive Trisilicontetrahydride Species (Si3H4)
2016
The bimolecular gas-phase reaction of ground-state atomic silicon (Si; 3P) with disilane (Si2H6; 1A1g) was explored under single-collision conditions in a crossed molecular beam machine at a collision energy of 21 kJ mol–1. Combined with electronic structure calculations, the results suggest the formation of Si3H4 isomer(s) along with molecular hydrogen via indirect scattering dynamics through Si3H6 collision complex(es) and intersystem crossing from the triplet to the singlet surface. The nonadiabatic reaction dynamics can synthesize the energetically accessible singlet Si3H4 isomers in overall exoergic reaction(s) (−93 ± 21 kJ mol–1). All reasonable reaction products are either cyclic or …
Spatiotemporal reaction kinetics of an ultrafast photoreaction pathway visualized by time-resolved liquid x-ray diffraction.
2006
We have studied the reaction dynamics for HgI 2 in methanol by using time-resolved x-ray diffraction (TRXD). Although numerous time-resolved spectroscopic studies have provided ample information about the early dynamics of HgI 2 , a comprehensive reaction mechanism in the solution phase spanning from picoseconds up to microseconds has been lacking. Here we show that TRXD can provide this information directly and quantitatively. Picosecond optical pulses triggered the dissociation of HgI 2 , and 100-ps-long x-ray pulses from a synchrotron probed the evolving structures over a wide temporal range. To theoretically explain the diffracted intensities, the structural signal from the solute, the…
Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials.…
1997
The first molecular dynamics (MD) simulation of a chemical process in solution with an ab initio description of the reactant species and a classical representation of the solvent is presented. We study the dynamics of proton (deuterium) transfer in strongly hydrogen-bonded systems characterized by an energy surface presenting a double well separated by a low activation barrier. We have chosen the hydroxyl-water complex in liquid water to analyze the coupling between the reactive system and the environment. The proton is transferred from one well to the other with a frequency close to 1 ps−1 which is comparable to the low-frequency band associated to hindered translations, diffusional transl…
Mechanistic insights into the phosphoryl transfer reaction in cyclin-dependent kinase 2: a QM/MM study
2019
AbstractCyclin-dependent kinase 2 (CDK2) is an important member of the CDK family exerting its most important function in the regulation of the cell cycle. It catalyzes the transfer of the gamma phosphate group from an ATP (adenosine triphosphate) molecule to a Serine/Threonine residue of a peptide substrate. Due to the importance of this enzyme, and protein kinases in general, a detailed understanding of the reaction mechanism is desired. Thus, in this work the phosphoryl transfer reaction catalyzed by CDK2 was revisited and studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. Our results show that the base-assisted mechanism is preferred over the substrat…
Dynamic Effects on Reaction Rates in a Michael Addition Catalyzed by Chalcone Isomerase. Beyond the Frozen Environment Approach
2008
We present a detailed microscopic study of the dynamics of the Michael addition reaction leading from 6'-deoxychalcone to the corresponding flavanone. The reaction dynamics are analyzed for both the uncatalyzed reaction in aqueous solution and the reaction catalyzed by Chalcone Isomerase. By means of rare event simulations of trajectories started at the transition state, we have computed the transmission coefficients, obtaining 0.76 +/- 0.04 and 0.87 +/- 0.03, in water and in the enzyme, respectively. According to these simulations, the Michael addition can be seen as a formation of a new intramolecular carbon-oxygen bond accompanied by a charge transfer essentially taking place from the nu…
Reaction dynamics and nuclear structure studies via deep inelastic collisions with heavy-ions: spin and parity assignment in49Ca
2011
The population and gamma decay of neutron rich nuclei around 48Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions (DIC) on 64Ni, at an energy approximately twice the Coulomb barrier. The reaction properties of the main products are investigated, focusing on total cross sections and angular distributions both integrated in energy and associated to the population of specific excited states. Gamma spectroscopy studies are also performed, giving evidence, for the first time in transfer reactions with heavy ions, of a large spin alignment (~70%), perpendicular to the reaction plane. This makes possible the use of angular distributions…
Measurement of double-polarization asymmetries in the quasi-elastic Process
2018
We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of He3 proceeding to pd and ppn final states, performed in quasi-elastic kinematics at Q2=0.25(GeV/c)2 for missing momenta up to 250MeV/c. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of He3 and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of He3 unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup pr…
Reaction Dynamics at the Barrier for Heavy Compound
2004
To investigate basic properties of the fusion reaction dynamics for heavy compound systems the partial wave distribution σ l extracted from measured γ multiplicities can be employed as an alternative to the classically used fusion/fission excitation functions. A variety of reactions leading to compound nuclei (CN) in the Pb region can be used to investigate features like the fusion-fission competition, the role of deformation in the fusion of heavy systems and a possible effect of the Z=82 shell on the enhancement of evaporation residue (ER) production. The measured spin distribution (SD) can provide information on the single partial wave cross sections which is hidden in the integral fusio…
Equivalence between local Fermi gas and shell models in inclusive muon capture from nuclei
2005
Motivated by recent studies of inclusive neutrino nucleus processes and muon capture within a correlated local Fermi gas model (LFG), we discuss the relevance of nuclear finite size effects in these reactions at low energy, in particular for muon capture. To disentangle these effects from others coming from the reaction dynamics we employ here a simple uncorrelated shell model that embodies the typical finite size content of the problem. The integrated decay widths of muon atoms calculated with this shell model are then compared for several nuclei with those obtained within the uncorrelated LFG, using in both models exactly the same theoretical ingredients and parameters. We find that the t…
Quasi-elastic reactions: an interplay of reaction dynamics and nuclear structure
2011
Multinucleon transfer reactions have been investigated in 40Ar+208Pb with the Prisma+Clara set-up. The experimental differential cross sections of different neutron transfer channels have been obtained at three different angular settings taking into account the transmission through the spectrometer. The experimental yields of the excited states have been determined via particle-γ coincidences. In odd Ar isotopes, we reported a signif cant population of 11/2− states, reached via neutron transfer. Their structure matches a stretched conf guration of the valence neutron coupled to vibration quanta.